64^(2x)*4=32

Simple and best practice solution for 64^(2x)*4=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 64^(2x)*4=32 equation:



64^(2x)*4=32
We move all terms to the left:
64^(2x)*4-(32)=0
Wy multiply elements
256x^2-32=0
a = 256; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·256·(-32)
Δ = 32768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32768}=\sqrt{16384*2}=\sqrt{16384}*\sqrt{2}=128\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-128\sqrt{2}}{2*256}=\frac{0-128\sqrt{2}}{512} =-\frac{128\sqrt{2}}{512} =-\frac{\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+128\sqrt{2}}{2*256}=\frac{0+128\sqrt{2}}{512} =\frac{128\sqrt{2}}{512} =\frac{\sqrt{2}}{4} $

See similar equations:

| b+–65=–99 | | 3g=-60 | | 7p-2p=18+17 | | 2562.24=3.14*x*144/3 | | 0.02n+193=0.3n+0.5(n-4) | | 3^(x+1)=7^x | | 9y2+12y+-10=0 | | (x+3)(x)=775 | | 50=2w+2(2w-9) | | X(x+1)(x+2)(x+3)=18800 | | 5/12+3/2x(-1/2)= | | 5/12+3/2x(-1/2)=5/12= | | 112+46+x=180 | | (8+x)(28+x)=(13+x)(18+x) | | 8^(-9x+8)=(1)/(64) | | 135=(16x+23) | | w-#=$# | | (9x-6)+(7x-4)+(3x+23)=355 | | 7.5=4/5p | | 4b-1=b,24b= | | x+(x*0.005)=2293.50 | | x/3+4=-26 | | x÷3+4=-26 | | n÷3+4=-26 | | 5+21=x+63 | | 42x42=1346 | | 5/21=x/63 | | 55(x-1)=20 | | 150=5m | | -9/2y+13/1y=1530-765 | | 4h-7h=13 | | 12/56=3/x |

Equations solver categories